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Abstract: The work done is a step towards analyzing the pressure field inside a sonar dome. Acoustic waves 

from afar are plane when they reach the dome but the wave that is transmitted into the dome is not plane. This 

occurs because the dome is doubly curved and the angle of incidence is a function of the coordinates of the 

dome. In this paper, a ray approach is presented to determine the acoustic field when a plane acoustic wave is 

incident on a solid layer embedded in an infinite fluid. Ray theory is used to determine the reflected and 

transmitted waves and the field inside the solid layer.  

 

Index Terms: acoustics, sonar dome, ray theory, wave theory. 

 

I. Introduction 
THE work done is a step towards analyzing the pressure field inside a sonar dome. Electro-acoustic 

transducers that convert electrical energy to acoustical energy and vice versa are housed inside sonar domes that 

are designed to withstand the mechanical loads they encounter and have good acoustical transparency. The 

thickness of the dome is always much less than the radius of curvature of the dome. Acoustic waves from a far 

are plane when they reach the dome, but the wave that is transmitted into the dome is not plane. This occurs 

because the dome is doubly curved and the angle of incidence is a function of the coordinates of the dome. 

In this paper, a ray approach is presented to determine the acoustic field when a plane acoustic wave is 

incident on a solid layer embedded in an infinite fluid. Ray theory is used to determine the reflected and 

transmitted waves and the field inside the solid layer. When a ray is incident on a solid-fluid interface, two types 

of rays within the solid layer and one in the fluid are generated. The rays in the solid known as dilatational and 

distortional rays travel at different speeds. Each ray that is generated undergoes multiple reflections and 

transmissions. A method is presented to systematically account for all the rays and find the sum of their 

contributions. The magnitude and phase of the fields, for oblique incidence of the wave, obtained using the ray 

approach, are compared with those obtained using wave theory. 

 

II. STATEMENT OF THE PROBLEM 
Consider a thin solid layer of infinite lateral extent embedded in an infinite fluid as shown in Fig. 1. 

The normal to the layer is along the x axis as shown in the Fig. 1. The layer extends from x = a to x = b, and its 

thickness, h, is equal to b-a. The media are labeled as I, II, and III for convenience, as shown in Fig. 1. 

 

 
Fig.1 Plane wave incident on thin solid layer embedded in infinite fluid 
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A plane acoustic wave with angular frequency ω is incident on the layer at an angle θ1. The normal to 

the wave lies in the xy plane. The reflected and transmitted velocity potentials and the velocity within the layer 

are of interest. 

The densities of the fluid and solid media are   ρand ρsrespectively. The speed of sound   in the fluid 

isc. λ and μ are Lame’s constants in the solid. Two types of waves are generated within the solid layer: pand 

swavesthat travel at angle θ2pand θ2s, respectively with respect to the x axis. The speeds  of  the longitudinal (p)  

and  transverse (s)  waves   in  the  solid  media   are   cp and  cs  respectively. A wave is transmitted to the fluid 

on other side of the plate at an angle θ3. Since medium I and III are same, θ3 is equal to θ1. 

Let the velocity potential field in the fluid be𝛷𝑓  and the velocity potentialsof the pand s waves in the solid layer 

be𝜙 and 𝜓, respectively. Then, the component of velocity in the fluid, normal to the solid layer (x direction), is 

 𝑈𝑓 =
𝜕𝛷𝑓

𝜕𝑥
 .              (1) 

The normal and tangential particle velocities in the solid layer are   

 𝑈 =  
𝜕𝛷

𝜕𝑥
 +  

𝜕𝜓

𝜕𝑦
             (2) 

and 

 𝑉 =  
𝜕𝛷

𝜕𝑦
−  

𝜕𝜓

𝜕𝑥
             (3) 

respectively. 

A ray approach to determine the displacement field is presented.The wave approach is first presented in brief 

and numerical results obtained using the two approaches are compared to show that the ray analysis is correct. 

 

III. Wave  Analysis 
The potential field in medium I is the sum of potentials of incident and reflected waves. Hence the total 

velocity potential in the first medium is expressed as  

𝛷𝑓 =  𝐴𝑓𝑒
(−𝑗𝛼𝑓𝑥) + 𝐵𝑓𝑒

(𝑗 𝛼𝑓𝑥)  𝑒(−𝑗𝛾𝑦 )    (4) 

where Afand Bf  are the complex amplitudes of incident and reflected waves respectively. The wave-number of 

the longitudinal wavein the fluid is 𝑘𝑓  = 𝜔 ⁄ 𝑐,𝛼𝑓 = 𝑘𝑓 cos 𝜃1and 𝛾 = 𝑘𝑓 sin 𝜃1are the horizontal and vertical 

components respectively of the angular wave number 𝑘𝑓  . 

The velocity potentialsof the pand s waves in the solid layer are expressed as 

 𝜙 =  𝐴𝑒 −𝑗𝛼𝑥  + 𝐵𝑒 𝑗𝛼𝑥   𝑒−𝑗𝛾𝑝 𝑦      (5) 

and  

 𝜓 =  𝐶𝑒 −𝑗𝛽𝑥  + 𝐷𝑒 𝑗𝛽𝑥   𝑒−𝑗𝛾𝑠𝑦      (6) 

respectively. 𝐴and 𝐶 are the complex amplitudes of the potentials of the p and s waves travelling to the right in 

the solid;𝐵 and 𝐷 are the complex amplitudes of the potential of the pand swaves travelling to the left in the 

solid. The wave-numbers of the pand s waves are𝑘2𝑝 = 𝜔/𝑐𝑝and𝑘2𝑠 = 𝜔/𝑐𝑠, respectively.  α, β, γp and γs 

arecomponents of the angular wave numbers k2p and k2s ,and are defined as 𝛼 = 𝑘2𝑝 cos 𝜃2𝑝 ,    𝛽 =

𝑘2𝑠 cos 𝜃2𝑠  , 𝛾𝑝 = 𝑘2𝑝 sin 𝜃2𝑝  and 𝛾𝑠 = 𝑘2𝑠 sin 𝜃2𝑠such that  𝛼2 + 𝛾2 = 𝑘2𝑝  
2  and𝛽2 + 𝛾2 = 𝑘2𝑠 

2 . 

The potential function associated with waves in the third medium is 

 𝛷𝑓 = 𝐸𝑒(−𝑗𝛼𝑓𝑥) 𝑒(−𝑗𝛾𝑦 )  (7) 

where E is the complex amplitude.  

The amplitudes and phases of the reflected and transmitted waves in first and third medium and waves 

within the solid layer are of interest. They are used to determine the displacement. 

If  the  plane  wave  is transmitted  from  fluid  to   solid or solid to fluid,   then  the   normal  particle  velocity  

on  both  fluid  and   solid  sides   of   the  boundary   must  be  equal[2].Therefore   

 

 
𝜕𝛷𝑓

𝜕𝑥
=

𝜕𝛷

𝜕𝑥
 +  

𝜕𝜓

𝜕𝑦
at 𝑥 = 𝑎 (8) 

and     

 
𝜕𝛷𝑓

𝜕𝑥
=

𝜕𝛷

𝜕𝑥
 +  

𝜕𝜓

𝜕𝑦
at 𝑥 = 𝑏 (9) 

 

The continuity of stress requires that the normal stress in the solid and the pressure in the fluid must be equal at 

the interface. The pressure in the fluid is 

 𝑃𝑓 = −𝑗𝜌𝜔𝛷𝑓  (10) 
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and normal stress in the solid is  

 𝑇 =
1

𝑗𝜔
  𝜆 + 2𝜇 

𝜕𝑈

𝜕𝑥
+ 𝜆

𝜕𝑉

𝜕𝑦
  (11) 

 

Thusat x=a and x=b 

1

𝑗𝜔
  𝜆 + 2𝜇 

𝜕𝑈

𝜕𝑥
+ 𝜆

𝜕𝑉

𝜕𝑦
 =  𝑗𝜌𝜔𝛷𝑓  (12)  

 

In fluid, shear stress is absent. Therefore, the    third boundarycondition at the fluid-solid    interface is that    the    

shear   stress   in the solid is    equal   to   zero [1]: 

  

𝜍 =
𝜇

𝑗𝜔
  
𝜕𝑉

𝜕𝑥
+

𝜕𝑈

𝜕𝑦
  = 0at x=a and x=b (13)   

These three boundary conditions applied at x=a and x=b interfaces yields six equations, as expressed in 

matrix form in Eq. (14). The matrix is solved to obtain the amplitude of six velocity potentials, Bf,A,B,C,D and 

E. 

 
 
 
 
 
 
 
 𝛼𝑓𝑒

 𝑗𝛼𝑓𝑎 𝛼𝑒 −𝑗𝛼𝑎  𝛾𝑒 −𝑗𝛽𝑎  𝛼𝑒 𝑗𝛼𝑎  𝛾𝑒 𝑗𝛽𝑎  0

𝜌𝜔2𝑒 𝑗 𝛼𝑓𝑎 𝜅𝑒 −𝑗𝛼𝑎   2𝜇𝛾𝛽 𝑒 −𝑗𝛽𝑎  𝜅𝑒 𝑗𝛼𝑎  −2𝜇𝛽𝛾𝑒 𝑗𝛽𝑎  0

0  −2𝛼𝛾 𝑒 −𝑗𝛼𝑎   𝛽2 − 𝛾2 𝑒 −𝑗𝛽𝑎   2𝛼𝛾 𝑒 𝑗𝛼𝑎  (𝛽2 − 𝛾2)𝑒 𝑗𝛽𝑎  0

0 −𝛼𝑒 −𝑗𝛼𝑏  𝛾𝑒 −𝑗𝛽𝑏  −𝛼𝑒 𝑗𝛼𝑏   −𝛾𝑒 𝑗𝛽𝑏  𝛼𝑓𝑒
 −𝑗𝛼𝑓𝑏 

0 𝜅𝑒 −𝑗𝛼𝑏   2𝜇𝛾𝛽 𝑒 −𝑗𝛽𝑏  𝜅𝑒 𝑗𝛼𝑏  (𝛽2 − 𝛾2)𝑒 𝑗𝛽𝑏  −𝜌𝜔2𝑒 −𝑗𝛼𝑓𝑏 

0  −2𝛼𝛾 𝑒 −𝑗𝛼𝑏   𝛽2 − 𝛾2 𝑒 −𝑗𝛽𝑏   2𝛼𝛾 𝑒 𝑗𝛼𝑏  (𝛽2 − 𝛾2)𝑒 𝑗𝛽𝑏  0  
 
 
 
 
 
 
 

 
 
 
 
 
 
𝐵𝑓

𝐴
𝐶
𝐵
𝐷
𝐸  

 
 
 
 
 

=

 
 
 
 
 
 
 𝛼𝑓𝑒

 −𝑗𝛼𝑓𝑎 

𝜌𝜔2𝑒 −𝑗𝛼𝑓𝑎 

0
0
0
0  

 
 
 
 
 
 

    (14) 

  

where𝜅 =  𝜆𝑘2𝑝
2 + 2𝜇𝛼2  

 

Power balance and special cases are considered below to show that Eq. (14) is correct. 

 

A. Power balance 

The matrix Eq. (14) and the numerical results obtained by solving it should satisfy certain power 

balance checks. First, consider two vertical planes parallel to the surfaces of the solid layer. One plane is in fluid 

medium I and the other is within the solid layer. The input acoustic power to the region between these two 

planes is due to waves with amplitudesAf, B and D. The output power is due to waves with amplitudes Bf,A and 

C. As the problem is defined as a no-loss case, input power must be equal to output power. Second, consider 

two vertical planes parallel to the surfaces of the solid layer. One plane is in fluid medium I and the other is in 

fluid medium III. Input power is due to the incident wave. Output power is due to reflected waves at x=a and 

transmitted waves at x=b. Input power must be equal to output power. Hence 𝑇𝜋 + 𝑅𝜋 = 1where, 𝑇𝜋  is the 

power transmission coefficient and 𝑅𝜋  is the power reflection coefficient [1]. These two power balance checks 

are satisfied by the solutions to the equation. 

 

B. Special cases 

The results for certain special cases are obtained by using the matrix Eq. (14); and this proves that the 

Eq. (14) and the solutions are correct. The first case is a thin fluid layer embedded in same fluid subjected to 

normal incidence by a plane acoustic wave. Hence there is complete transmission and no reflection [1].By 

assigning values θ = 0, cs = 0,cp = c, ρs = ρ, μ=0 to the parameters in Eq. (14), it reduces to  
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 𝛼𝑓𝑒

 𝑗𝛼𝑓𝑎 𝛼𝑒 −𝑗𝛼𝑎  𝛼𝑒 𝑗𝛼𝑎  0

𝜌𝜔2𝑒 𝑗𝛼𝑓𝑎  𝜆𝑘2𝑝
2  𝑒 −𝑗𝛼𝑎   𝜆𝑘2𝑝

2  𝑒 𝑗𝛼𝑎  0

0 −𝛼𝑒 −𝑗𝛼𝑏  −𝛼𝑒 𝑗𝛼𝑏  𝛼𝑓𝑒
 −𝑗𝛼𝑓𝑏 

0  𝜆𝑘2𝑝
2  𝑒 −𝑗𝛼𝑏   𝜆𝑘2𝑝

2  𝑒 𝑗𝛼𝑏  −𝜌𝜔2𝑒 −𝑗𝛼𝑓𝑏 
 
 
 
 
 
 

 

𝐵𝑓

𝐴
𝐵
𝐸

 =

 
 
 
 
 𝛼𝑓𝑒

 −𝑗𝛼𝑓𝑎 

𝜌𝜔2𝑒 −𝑗𝛼𝑓𝑎 

0
0  

 
 
 
 

  (15) 

The solutions to Eq. (15) are Bf =0, A=1, B=0, and E=1.Bf =0, B=0 implies that there is no reflection. 

A=1 andE=1 implies that complete transmission occurs at both the interfaces. These are the expected results. As 

a second case, consider oblique incidence on a thin fluid layer embedded in the same fluid. Again, complete 

transmission is expected and it is indeed the case. Third, consider normal incidence of a plane wave on a fluid 

layer embedded in a different fluid. By using θ =0, cs= 0,cp ≠c, ρs ≠ ρ, μ=0,Eq. (14) reduces to the set of 4 

equations in Ref. 1.  

 When a wave is obliquely incident on an interface between two semi-infinite fluids, 1+R=T where R 

and T are reflection and transmission coefficients, respectively [1]. When a wave is obliquely incident on a thin 

fluid layer embedded in different fluid, |1+R|= |T| where | | denotes magnitude. Using θ ≠0, cs = 0 and cp ≠ 0, ρs ≠ 

ρ, μ=0in Eq. (14) yields Eqs. whose solutions satisfy the condition.  

When a plane wave is normally incident on a thin solid layer embedded in fluid, only longitudinal waves are 

generated in solid layer [5]. For this case, the solutions C and D to Eq. (14) are zero. Therefore, the condition is 

satisfied. 

When a plane wave is obliquely incident on a thin solid layer embedded in fluidand the angle of incidence, 

𝜃1 = sin−1 𝑐/(√2 𝑐𝑠)  , then θ2s =45
0
, and only transverse waves are generated in solid [2]. The solutions to Eq. 

(14) satisfy this condition. 

 

IV. Ray Analysis 
The assumption that energy is carried along paths that rays take through the medium is used to describe 

the acoustic field. To define the ray, the local angle that it makes with the global x axis, 𝜃, is specified. The 

phase of the ray is expressed in a coordinate system that is attached to the ray.  The x axis of the local coordinate 

system is along the direction of the wave. 

When a f ray (longitudinal ray in fluid) is incident on the fluid- solid interface a f ray get reflected and a 

p and a s ray get transmitted. When a p or s ray reaches the solid- fluid interface both p and s rays get reflected 

and a f ray gets transmitted and travels to infinity.This happens whenever a ray meets an interface and can take 

place infinite number of times before the ray reaches the field point. The total acoustic field is the sum of all 

rays. 

A ray is labelled as n=1 ray when the path travelled by the ray within the solid layer has only one 

segment. That is, the ray has undergone no reflection when travelling within the layer. Similarly a ray is labeled 

n=2 ray when the path travelled by the ray within the solid layer involves two segments. That is, the ray has 

undergone one reflection when travelling within the layer. The segments may be p or s segments. It is necessary 

to distinguish between the four n=2 rays. Therefore, they are labeled as 2pp, 2ps, 2sp, and 2ss where the nth 

letter indicates the type of the nth segment. In general, a ray with n segments has 2
n 

labels. For example, all the 

following are n=3 rays: 3ppp, 3pps, 3pss, 3spp, 3ssp, 3sps, 3psp, 3sss.The total acoustic field is due to the n= 0, 

1, 2, … rays.  

The rays that emerge from the layer and travel in the fluid in which the incident wave is travelling are 

labeled such that it is possible to identify each segment of that ray. For example, consider the ray 2psf. The first 

segment is a p ray that is transmitted at the fluid-solid interface. The second segment is a s ray that is reflected at 

the solid-fluid interface. The third segment is a f ray that is transmitted at the solid-fluid interface. The total field 

that is reflected from the layer has contributions only from   n = 0, 2, 4, … rays. The total field that is 

transmitted through the layer has contributions only from n = 1, 3, 5, … rays. The internal field in the layer has 

contributions from  n = 1, 2, 3, … rays.  

The potential of any ray can be expressed as 

 𝜙𝑛 = 𝐴𝑛𝑒
𝑗 𝜁𝑛  (16)  

where  𝐴𝑛  is the amplitude of the ray which has undergone n-1 reflections and 𝜁𝑛  is the phase. e𝑗𝜔𝑡  is the 

variation in time, of the potential. Since this term appears in all expressions, it is suppressed in this equation and 

will be, for all other equations. Medwin and Clay computed the reflection and transmission coefficients of a thin 

fluid layer embedded in an infinite fluid by considering the total up travelling signals as the sum of an infinite 

number of partial transmissions and reflections. Total reflection and transmission coefficients were obtained by 
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solving a geometric series. This geometric series and analytical solution can be applied only to a fluid layer. In a 

solid layer due to the coupling between the p and s waves the number of rays to track, and in turn the number of 

reflection and transmission calculations, increases exponentially with each internal reflection. 

Here a numerical solution is obtained by adding the potentials due to several rays and convergence is verified by 

comparing the results with those obtained using wave theory. For the sonar dome, wave analysis is not possible 

and convergence can be verified by increasing the number of terms used to find the sum. 

 

C. Semi-infinite Media: Reflection and Transmission Coefficients 

In the ray approach, the reflection and transmission coefficients when f, p, and s rays meet an interface 

at x =0 between two semi-infinite media are used.  

When a longitudinal wave is incident on a fluid-sold interface, the continuity conditions lead to 

 

 

𝛼𝑓 −𝛾 𝛼

−𝜌𝜔2 𝜅  2𝜇𝛾𝛽 

0  −2𝛼𝛾 (𝛽2 − 𝛾2)

  

𝑅𝑓𝑓

𝑇𝑓𝑝
𝑇𝑓𝑠

 =  

𝛼𝑓

𝜌𝜔2

0

 (17) 

 

 Rff  is the reflection coefficient for the longitudinal wave, Tfs  is the transmission coefficient for the s wave, 

and Tfp  is the transmission coefficient for the p wave. 

When a p ray is incident at the solid-fluid interface the continuity conditions lead to 

 

  

𝛼 −𝛾 𝛼𝑓

𝜅 − 2𝜇𝛾𝛽 −𝜌𝜔2

2𝛼𝛾  𝛽2 − 𝛾2 0

  

𝑅𝑝𝑝

𝑅𝑝𝑠

𝑇𝑝𝑓

 =  

𝛼
𝜅

2𝛼𝛾
  (18) 

 

where 𝑅𝑝𝑠   is the reflection coefficient for the s ray,𝑅𝑝𝑝  is the reflection coefficient for the p ray, and 𝑇𝑝𝑓  is the 

transmission coefficient for the wave in the fluid. 

When a s ray is incident at the solid-fluid interface the continuity conditions lead to 

  

𝛼𝑓 −𝛾 𝛼

𝜅 − 2𝜇𝛾𝛽 −𝜌𝜔2

2𝛼𝛾  𝛽2 − 𝛾2 0

  

𝑅𝑠𝑝

𝑅𝑠𝑠

𝑇𝑠𝑓

 =  

𝛾
−2𝜇𝛾𝛽

− 𝛽2 − 𝛾2 
 (19)  

 

𝑇𝑠𝑓 is the transmission coefficient, 𝑅𝑠𝑠  is the reflection coefficient for the s ray, and 𝑅𝑠𝑝  is the reflection 

coefficient for the p ray. 

Eqs. (17) to (19) are solved for the particular angle of incidence. The results are used in the ray analysis.  

 

D. Solid Layer: Reflection coefficient 

When a plane acoustic wave of unit amplitude is incident on the solid layer, the potential reflection 

coefficient is the sum of potentials of all the rays emerging out to first medium at x=a interface as shown in 

Fig.2. 
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It is expressed as 

 

 𝑅𝑎 =  𝜙𝑛𝑓
∞
𝑛=0,2,4..  (20) 

 

where 𝜙𝑛𝑓  are the potentials of emerging rays. n indicates the number of ray segments within the solid layer. 

Each 𝜙𝑛𝑓   term indicates the sum of all 2
n
p and s combinations of rays. For example, 𝜙2𝑓 = 𝜙2𝑝𝑝𝑓 + 𝜙2𝑝𝑠𝑓 +

𝜙2𝑠𝑝𝑓 + 𝜙2𝑠𝑠𝑓 .The general expression for 𝜙𝑛𝑓  is  

 𝜙𝑛𝑓 = 𝐴𝑛𝑓 𝑒
𝑗  𝑘1𝜉𝑛−𝜂𝑛   (21) 

 

In Fig. 2, the reflected rays are 0f, 2psf, 4psppf etc.  

The amplitude of any ray emerging from the solid layer into the fluid in the left is expressed as  

𝐴𝑛𝑓 =  (𝑇𝑓𝑠𝑎+𝑇𝑓𝑝𝑏) 𝑅𝑠𝑠 
𝑐 𝑅𝑠𝑝 

𝑑
 𝑅𝑝𝑠 

𝑒
 𝑅𝑝𝑝  

𝑓
 𝑇𝑠𝑓𝑔 + 𝑇𝑠𝑓 𝑙    (22) 

 

where n is an even number. a, b, c, d, e, f, g,l  are the number of the corresponding events occurring in the 

considered ray. It is to be noted that a, b, g and l acquires values only zero and one. Also when a is one, b is 

zero and when g is one, l is zero and vice versa. It is because for a given ray only the first segment is transmitted 

at fluid- solid interface and last segment at solid-fluid interface. This is applicable for all succeeding cases 

explained in this chapter. 

ξn corresponds to the  path not travelled by a particular ray with respect to origin at an instant. A wave-front is 

defined as the surface on which phase is constant. It follows that the wave-front, in 2D space, at any instant of 

time, is a straight line and will be perpendicular to direction of propagation. An imaginary wave-front is drawn 

for the reflected rays such that it passes through the origin. Thus for 2psf ray ξ is distance B2I1 in Fig 2. denoted 

as 𝐵2𝐼1       ,for ray 4psppf,𝐵4𝐼2
       and so on. 

The phase term is generalized as 

 k1𝜉𝑛 − 𝜂𝑛 = h 𝑁𝑝𝑘2𝑝 cos 𝜃2𝑝 + 𝑁𝑠𝑘2𝑠 cos 𝜃2𝑠 (23) 

where 𝑁𝑝  and 𝑁𝑠 are number of p and s segments in a given ray respectively. Thus the total reflection 

coefficient at first interface, 

 Ra =  𝑅𝑓𝑓  +   𝐴𝑛
∞
𝑛=2,4.. 𝑒𝑗  k1𝜉𝑛−𝜂𝑛   (24)   

Fig. 2.Schematic of ray propagation through the solid layer with 

imaginary wave front for reflected rays at x=a interface 
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Ra  corresponds 𝐵𝑓  . 

 

E. Solid Layer: Rays within the Layer 

The effect of all the rays travelling within the layer is a standing p wave and a standing s wave. Each 

standing wave is comprised of one wave travelling to the right and another travelling to the left. It is of interest 

to determine the complex amplitude of the p and s waves travelling to the right and left. 

 

a) Waves travelling to the right 

The p wave travelling to the right is comprised of all n = 1, 3, 5 … rays ending with a p segment. 

Amplitude of its potential, 𝐴 is expressed as 

 𝐴 =  𝜙𝑛∗𝑝
∞
𝑛=1,3,5..  (25) 

where *p indicates that any sequence of rays that ends with a p segment is to be considered. The s wave 

traveling to the right  is comprised of  all n =  1, 3, 5 … rays ending with a s segment. Its potential, C is 

expressed as 

 C=  𝜙𝑛∗𝑠
∞
𝑛=1,3,5.  (26) 

From Fig.3 it is evident that rays, 1p, 3psp, 5pspps….travel to rightfrom first interface.  

The general expression for 𝜙𝑛∗𝑝  and 𝜙𝑛∗𝑠 are 

 𝜙𝑛∗𝑝 = 𝐴𝑛𝑒
𝑗  𝑘2𝑝𝜉𝑛−𝜂𝑛   (27) 

 𝜙𝑛∗𝑠 = 𝐴𝑛𝑒
𝑗  𝑘2𝑠𝜉𝑛−𝜂𝑛   (28) 

The amplitude of any ray(p or s)  travelling to right at first interface is given by 

𝐴𝑛 =  (𝑇𝑓𝑠𝑎+𝑇𝑓𝑝𝑏) 𝑅𝑠𝑠 
𝑐 𝑅𝑠𝑝 

𝑑
 𝑅𝑝𝑠 

𝑒
 𝑅𝑝𝑝  

𝑓
  (29) 

where n is an odd number. a, b, c, d, e, f, g  are the number of the corresponding events occurring in the 

considered ray.  

 Imaginary wave fronts of p and s rays are drawn such that they passes through the origin .ξ depends on 

last segment of the ray since the wave fronts of p and s waves are different.  

 

 
Fig. 3.  Schematic of ray propagation through the solid layer with imaginary wave front for p and s rays 

travelling right at x=a interface. 

 

 

In general, phase for p rays travelling right is given by  
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k2s𝜉𝑛 − 𝜂𝑛 = −h  𝑁𝑝 − 1 𝑘2𝑝 cos 𝜃2𝑝 + 𝑁𝑠𝑘2𝑠 cos 𝜃2𝑠  (30) 

Phase for s rays travelling right is given by  
 k2s𝜉𝑛 − 𝜂𝑛

 = −h 𝑁𝑝𝑘2𝑝 cos 𝜃2𝑝 +  𝑁𝑠 − 1 𝑘2𝑠 cos 𝜃2𝑠   (31) 

 

b) Waves travelling to the left 

The complex amplitude of p and s waves travelling to leftfrom second interface is also computed in 

similar way. All n = 2,4,6…rays travel to the left within the solid layer as shown in Fig.4 

Potential of pand s waves travelling to left are expressed as 

 𝐵 =  𝜙𝑛∗𝑝
∞
𝑛=2,4,6...  (32) 

 𝐷 =  𝜙𝑛∗𝑠
∞
𝑛=2,4,6...  (33) 

The general expression for 𝜙𝑛∗𝑝  and 𝜙𝑛∗𝑠 are 

 𝜙𝑛∗𝑝 = 𝐴𝑛𝑒
𝑗  𝑘2𝑝𝜉𝑛−𝜂𝑛−𝜒  (34) 

 𝜙𝑛∗𝑠 = 𝐴𝑛𝑒
𝑗  𝑘2𝑠𝜉𝑛−𝜂𝑛−𝜒  (35) 

The amplitude of any ray travelling left at second interface is given by 

𝐴𝑛 =  (𝑇𝑓𝑠𝑎+𝑇𝑓𝑝𝑏) 𝑅𝑠𝑠 
𝑐 𝑅𝑠𝑝 

𝑑
 𝑅𝑝𝑠 

𝑒
 𝑅𝑝𝑝  

𝑓
  (36) 

where n is even. 

 

 
Fig. 4.  Schematic of ray propagation through the solid layer with imaginary wave fronts for p and s rays 

travelling to left are shifted to at x=a interface. 

 

The imaginary wave-fronts are drawn such that they passes through the point of intersection of first 

reflected p or s ray with x=b interface. Wave-fronts have to be shifted to origin.𝜒 corresponds to the distance 

through which the wave fronts are shifted to origin multiplied by the wave number of the ray. Value of  𝜒 

depends on the initial and final segments of the considered ray . 

Other components of phase are computed as before. General form of phase is 

 𝑘2𝜉𝑛 − 𝜂𝑛 − 𝜒 = − 𝑁𝑝𝑘2𝑝 𝑐𝑜𝑠 𝜃2𝑝 + 𝑁𝑠𝑘2𝑠 𝑐𝑜𝑠 𝜃2𝑠   (37) 

where 𝑁𝑝  and 𝑁𝑠are number of p and s segments in a given ray respectively.  
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F. Solid Layer: Transmission Coefficient  

The transmission coefficient at second interface will be the sum of all rays getting transmitted at x=b. From 

Fig.5 it is evident that all odd set of rays, 1pf, 3pspf,5pspppf….get transmitted at second interface. Transmission 

coefficient will be the sum of potential of all such rays.  

 𝑇𝑏 =  𝜙𝑛𝑓
∞
𝑛=1,3..  (38) 

The general expression for 𝜙𝑛𝑓  is  

 𝜙𝑛𝑓 = 𝐴𝑛𝑓 𝑒
𝑗  𝑘2𝜉𝑛−𝜂𝑛 +𝜒  (39) 

 

The amplitude of ray is given by 

𝐴𝑛 =  (𝑇𝑓𝑠𝑎+𝑇𝑓𝑝𝑏) 𝑅𝑠𝑠 
𝑐 𝑅𝑠𝑝 

𝑑
 𝑅𝑝𝑠 

𝑒
 𝑅𝑝𝑝  

𝑓
 𝑇𝑠𝑓𝑔 + 𝑇𝑠𝑓 𝑙    (40) 

for odd values of n.  

 

 
Fig. 5.  Schematic of rays transmitted through the solid layer with imaginary wave fronts fortransmitted rays  are 

shifted to at x=a interface. 

 

The wave-front has to be shifted to origin. The value of  𝜒 depends on the first segment of the ray. If it is a p 

segment then  

 𝜒 = 𝑘𝑓
cos  𝜃3−𝜃2𝑝  

cos 𝜃2𝑝
 (41) 

If first segment is s, 

 𝜒 = 𝑘𝑓
cos  𝜃3−𝜃2𝑠 

cos 𝜃2𝑠
 (42) 

Phase term can be generalized as 

 

 k2𝜉𝑛 − 𝜂𝑛 + 𝜒 = −h 𝑁𝑝 cos 𝜃2𝑝 + 𝑁𝑠𝑘2𝑠 cos 𝜃2𝑠 − 𝑘𝑓 cos 𝜃3                (43) 

Thus the total transmission coefficient at x=b 

Tb =  𝐴𝑛𝑓
∞
𝑛=1,3,5.. 𝑒𝑗  k2𝜉𝑛−𝜂𝑛 +𝜒   (44) 

And corresponds to Ef in wave analysis. 
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V. Numerical Results And Discussions 
G. Normal Incidence 

Numerical results are presented for fluid of density 𝜌1=𝜌3=1000 kg/m
3
 and speed of sound 𝑐1=𝑐3=1500 

m/s. The solid has density 𝜌𝑠=1500 kg/m
3
. The speed of the p and s rays are 𝑐𝑝 = 2250 m/s and 𝑐s  = 882 m/s. 

The frequency considered is 0 to 5 kHz. 

 
Fig. 6. Amplitude of velocity potential (real part) of left travelling p waves using     ray (circles) and wave (line) 

theory 

 

 
Fig.7 Reflection coefficient (real part) using ray (circles)  and wave (line) theory 

 

 
Fig.8. Transmission coefficient (real part) using ray (circles) and wave (line) theory 
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Fig.9 Amplitude of velocity potential (real part) of right travelling p waves using ray (circles)  and wave (line) 

theory 

 

H. Oblique Incidence 

Numerical results are presented for fluid of density 𝜌1=𝜌3=1000 kg/m
3
 and speed of sound 𝑐1=𝑐3=1500 m/s. The 

solid has density 𝜌𝑠=1500 kg/m
3
. The speed of the p and s rays are 𝑐𝑝 = 2250 m/s and 𝑐s  = 882 m/s. The 

frequency considered is 1 to 5 kHz.The angle of incidence is 40
o
. 

 
Fig.10, Reflection coefficient (real part) using ray (star)  and wave(line)theory 

 

 
Fig. 11 Transmission coefficient (real part) using ray (star) and wave (line) theory 
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Fig.12 Amplitude of velocity potential (real part) of right travelling p waves using ray (star)  and wave (line) 

theory 

 
Fig.13 Amplitude of velocity potential (real part) of right travelling s waves using ray (star)  and wave (line) 

theory 

 

 
Fig.14 Amplitude of velocity potential (real part) of left travelling p waves using     ray (star) and wave (line) 

theory 
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Fig. 15. Amplitude of velocity potential (real part) of left travelling s waves using     ray (star) and wave (line) 

theory 

 

VI. Conclusions 
Analysis of transmission through a plane panel is studied using wave theory and ray theory. It is shown 

that the same results are obtained by using both methods.  

The expressions derived for ray fields are general and can be used for analysis of a wave that is 

obliquely incident on the plane panel that is a thin solid layer embedded in an infinite fluid. A program is written 

in MATLAB to compute the contributions of 2
n  

n = 0, 1, 2, … rays to the field. The contributions are summed 

numerically. For the special case of normal incidence, the results are shown to be in good agreement with 

analytical results obtained using wave theory. Specifically, the reflection coefficient, the transmission 

coefficient and complex amplitude of waves within the solid layer computed using ray theory and wave theory 

are shown to be numerically equal. This shows that the ray approach can be extended to determine the pressure 

field inside a sonar dome.  
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